คอมพิวเตอร์

เส้นใยแก้วนำแสง



ในอาคารบ้านเรือน ที่อยู่อาศัย สำนักงาน อาคารอุตสาหกรรมต่าง ๆ ล้วนแล้วแต่ต้องใช้สายสัญญาณเพื่อเชื่อมโยงระบบสื่อสาร แต่เดิมสายสัญญาณที่นำมาใช้ได้แก่สายตัวนำทองแดง
ปัจจุบันสายสัญญาณระบบสื่อสารมีความจำเป็นมากขึ้น โดยเฉพาะระบบการเชื่อมโยงเครือข่ายคอมพิวเตอร์ และมีแนวโน้มที่จะรวมระบบสื่อสารอย่างอื่นประกอบเข้ามาในระบบด้วย เช่น ระบบเคเบิลทีวี ระบบโทรศัพท์ ระบบการบริการข้อมูลข่าวสารเฉพาะของบริษัทผู้ให้บริการต่าง ๆ ความจำเป็นในลักษณะนี้จึงมีผู้ตั้งคำถามว่า ถึงเวลาแล้วหรือยังที่จะให้อาคารที่สร้างใหม่มีระบบเครือข่ายสายสัญญาณด้วยเส้นใยแก้วนำแสง
หากพิจารณาให้ดีพบว่า เวลานั้นได้มาถึงแล้ว ปัจจุบันราคาของเส้นใยแก้วนำแสงที่เดินในอาคารมีราคาใกล้เคียงกับสายยูทีพีแบบเกรดที่ดี เช่น แคต 5 ขณะเดี่ยวกันสายเส้นใยแก้วนำแสงให้ประสิทธิภาพที่สูงกว่ามากและรองรับการใช้งานในอนาคตได้มากกว่า
สายยูทีพีแบบแคต 5 รองรับความเร็วสัญญาณได้ 100 เมกะบิตต่อวินาที และมีข้อจำกัดในเรื่องความยาวเพียง 100 เมตร ขณะที่เส้นใยแก้วนำแสงรองรับความถี่สัญญาณได้หลายร้อยเมกะเฮิรตซ์ และยังใช้ได้กับความยาวถึง 2000 เมตร การพัฒนาในเรื่องต่าง ๆ ของเส้นใยแก้วนำแสงได้ก้าวมาถึงจุดที่จะนำมาใช้กันอย่างกว้างขวางแล้ว
จุดเด่นของเส้นใยแก้วนำแสง

จุดเด่นของเส้นใยแก้วนำแสงมีหลายประการ โดยเฉพาะจุดที่ได้เปรียบสายตัวนำทองแดง ที่จะนำมาใช้แทนตัวนำทองแดง จุดเด่นเหล่านี้มีการพัฒนามาอย่างต่อเนื่องและดีขึ้นเรื่อย ๆ ซึ่งประกอบด้วย
ความสามารถในการรับส่งข้อมูลข่าวสาร

เส้นใยแก้วนำแสงที่เป็นแท่งแก้วขนเหล็ก มีการโค้งงอได้ ขนาดเส้นผ่าศูนย์กลางที่ใช้กันมากคือ 62.5/125 ไมโครเมตร เส้นใยแก้วนำแสงขนาดนี้เป็นสายที่นำมาใช้ภายในอาคารทั่วไป เมื่อใช้กับคลื่นแสงความยาวคลื่น 850 นาโนเมตร จะส่งสัญญาณได้มากกว่า 160 เมกะเฮิรตซ์ ที่ความยาว 1 กิโลเมตร แล้วถ้าใช้ความยาวคลื่น 1300 นาโนเมตร จะส่งสัญญาณได้กว่า 500 นาโนเมตร ที่ความยาว 1 กิโลเมตร และถ้าลดความยาวเหลือ 100 เมตร จะใช้กับความถี่สัญญาณมากกว่า 1 กิกะเฮิรตซ์ ดังนั้นจึงดีกว่าสายยูทีพีแบบแคต 5 ที่ใช้กับสัญญาณได้ 100 เมกะเฮิรตซ์
กำลังสูญเสียต่ำ

เส้นใยแก้วนำแสงมีคุณสมบัติในเชิงการให้แสงวิ่งผ่านได้ การบั่นทอนแสงมีค่าค่อนค่างต่ำ ตามมาตรฐานของเส้นใยแก้วนำแสง การใช้เส้นสัญญาณนำแสงนี้ใช้ได้ยาวถึง 2000 เมตร หากระยะทางเกินกว่า 2000 เมตร ต้องใช้รีพีตเตอร์ทุก ๆ 2000 เมตร การสูญเสียในเรื่องสัญญาณจึงต่ำกว่าสายตัวนำทองแดงมาก ที่สายตัวนำทองแดงมีข้อกำหนดระยะทางเพียง 100 เมตร
หากพิจารณาในแง่ความถี่ที่ใช้ ผลตอบสนองทางความถึ่มีผลต่อกำลังสูญเสีย โดยเฉพาะในลวดตัวนำทองแดง เมื่อใช้เป็นสายสัญญาณ คุณสมบัติของสายตัวนำทองแดงจะเปลี่ยนแปลงเมื่อใช้ความถี่ต่างกัน โดยเฉพาะเมื่อใช้ความถึ่ของสัญญาณที่ส่งในตัวนำทองแดงสูงขึ้น อัตราการสูญเสียก็จะมากตามแต่กรณีของเส้นใยแก้วนำแสงเราใช้สัญญาณความถี่มอดูเลตไปกับแสง การเปลี่ยนสัญญาณรับส่งข้อมูลจึงไม่มีผลกับกำลังสูญเสียทางแสง
คลื่นแม่เหล็กไฟฟ้าไม่สามารถรบกวนได้

ปัญหาที่สำคัญของสายสัญญาแบบทองแดงคือการเหนี่ยวนำโดยคลื่นแม่เหล็กไฟฟ้า ปัญหานี้มีมาก ตั้งแต่เรื่องการรบกวนระหว่างตัวนำหรือเรียกว่าครอสทอร์ค การำม่แมตซ์พอดีทางอิมพีแดนซ์ ทำให้มีคลื่นสะท้อนกลับ การรบกวนจากปัจจัยภายนอกที่เรียกว่า EMI ปัญหเหล่านี้สร้างให้ผู้ใช้ต้องหมั่นดูแล
แต่สำหรับเส้นใยแก้วนำแสงแล้วปัญหาเรื่องเหล่านี้จะไม่มี เพราะแสงเป็นพลังงานที่มีพลังงานเฉพาะและไม่ถูกรบกวนของแสงจากภายนอก
น้ำหนักเบา

เส้นใยแก้วนำแสงมีน้ำหนักเบากว่าเส้นลวดตัวนำทองแดง น้ำหนักของเส้นใยแก้วนำแสงขนาด 2 แกนที่ใช้ทั่วไปมีน้ำหนักเพียงประมาณ 20 ถึง 50 เปอร์เซ็นต์ของสายยูทีพีแบบแคต 5
ขนาดเล็ก

เส้นใยแก้วนำแสงมีขนาดทางภาคตัดขวางแล้วเล็กกว่าลวดทองแดงมาก ขนาดของเส้นใยแก้วนำแสงเมื่อรวมวัสดุหุ้มแล้วมีขนาดเล็กกว่าสายยูทีพี โดยขนาดของสายใยแก้วนี้ใช้พื้นที่ประมาณ 15 เปอร์เซ็นต์ของเส้นลวดยูทีพีแบบแคต 5
มีความปลอดภัยในเรื่องข้อมูลสูงกว่า

การใช้เส้นใยแก้วนำแสงมีลักษณะใช้แสงเดินทางในข่าย จึงยากที่จะทำการแท๊ปหรือทำการตัดฟังข้อมูล
มีความปลอดภัยต่อชีวิตและทรัพย์สิน

การที่เส้นใยแก้วเป็นฉนวนทั้งหมด จึงไม่นำกระแสไฟฟ้า การลัดวงจร การเกิดอันตรายจากกระแสไฟฟ้าจึงไม่เกิดขึ้น
ความเข้าใจผิดบางประการ

แต่เดิมเส้นใยแก้วนำแสงมีใช้เฉพาะในโครงการใหญ๋ หรือใช้เป็นเครือข่ายแบบแบ็กโบน เทคโนโลยีเกี่ยวกับเส้นใยแก้วนำแสงก็ยังไม่เป็นที่เปิดเผยมากนัก ทำให้เกิดความเข้าใจผิดบางประการเกี่ยวกับคุณสมบัติและการประยุกต์ใช้งาน
แตกหักได้ง่าย

ด้วยความคิดที่ว่า "แก้วแตกหังได้ง่าย" ความคิดนี้จึงเกิดขึ้นกับเส้นใยแก้วด้วย เพราะวัสดุที่ทำเป็นแก้ว ความเป็นจริงแล้วเส้นใยแก้วมีความแข็งแรงและทนทานสูงมาก การออกแบบใยแก้วมีเส้นใยห้อมล้อมไว้ ทำให้ทนแรงกระแทก นอกจากนี้แรงดึงในเส้นใยแก้วยังมีความทนทานสูงกว่าสายยูทพี หากเปรียบเทียบเส้นใยแก้วกับสายยูทีพีแล้วจะพบว่า ข้อกำหนดของสายยูทีพีคุณสมบัติหลายอย่างต่ำกว่าเส้นใยแก้ว เช่น การดึงสาย การหักเลี้ยวเพราะลักษณะคุณสมบัติทางไฟฟ้าที่ความถี่สูงเปลี่ยนแปลงได้ง่ายกว่า
เส้นใยแก้วนำแสงมีราคาแพง

แนวโน้มทางด้านราคามีการเปลี่ยนแปลงราคาของเส้นใยแก้วนำแสงลดลง จนในขณะนี้ยังแพงกว่าสายยูททีพีอยู่บ้าง แต่ก็ไม่มากนักนอกจากนี้หลายคนยังเข้าใจว่า การติดตั้งเส้นใยแก้วนำแสงมีข้อยุ่งยาก และต้องใช้คนที่มีความรู้ความชำนาญ เสียค่าติตั้งแพง ความคิดนี้ก็คงไม่จริง เพราะการติดตั้งทำได้ไม่ยากนักเนื่องจากมีเครื่องมือพิเศษช่วยได้มาก เครื่องมือพิเศษนี้สามารถเข้าหัวสายได้โดยง่ายกว่าแต่เดิมมาก อีกทั้งราคาเครื่องมือก็ถูกลงจนมีผู้รับติดตั้งได้ทั่วไป
เส้นใยแก้วนำแสงยังไม่สามารถใช้กับเครื่องที่ตั้งโต๊ะได้

ปัจจุบันพีซีที่ใช้ส่วนใหญ่ต่อกับแลนแบบอีเธอร์เน็ต ซึ่งได้ความเร็ว 10 เมกะบิต การเชื่อมต่อกับแลนมีหลายมาตรฐาน โดยเฉพาะปัจจุบันหากใช้ความเร็วเกินกว่า 100 เมกะบิต สายยูทีพีรองรับไม่ได้ เช่น เอทีเอ็ม 155 เมกะบิต แนวโน้มของการใช้งานระบบเครือข่ายมีทางที่ต้องใช้แถบกว้างสูงขึ้นมาก โดยเฉพาะเมื่อต้องการให้พีซีเป็นมัลติมีเดียเพื่อแสดงผลเป็นภาพวิดีโอ การใช้เส้นใยแก้วนำแสงดูจะเป็นทางออก พัฒนการของการ์ดก็ได้พัฒนาไปมากเอทีเอ็มการ์ดใช้ความเร็ว 155 เมกะบิต ย่อมต้องใช้เส้นใยแก้วนำแสงรองรับ การใช้เส้นใยแก้นำแสงยังสามารถใช้ในการส่งรับวิดีโอคอนเฟอเรนซ์ หรือสัญญาณประกอบอื่น ๆ ได้ดี
เส้นใยแก้วนำแสงมีกี่แบบ

คุณสมบัติของเส้นใยแก้วนำแสงแบ่งแยกได้ตามลักษณะคุณสมบัติของตัวนำแสงที่มีลักษณะการให้แสงส่องทะลุในลักษณะอย่างไร คุณสมบัติของเนื้แก้วนี้จะกระจายแสงออก ซึ่งในกรณีนี้การสะท้อนของแสงกลับต้องเกิดขึ้น โดยผนังแก้วด้านข้างต้องมีดัชนีหักเหของแสงที่ทำให้แสงสะท้อนกลับ เพื่อลดการสูญเสียของพลังงานแสง วิธีการนี้เราแบ่งแยกออกเป็นสองแบบคือ แบบซิงเกิลโหมด และมัลติโหมด
ซิงเกิลโหมด

เป็นการใช้ตัวนำแสงที่บีบลำแสงให้พุ่งตรงไปตามท่อแก้ว โดยมีการกระจายแสงออกทางด้านข้างน้อยที่สุด ซิงเกิลโหมดจึงเป็นเส้นใยแก้วนำแสงที่มีกำลังสูญเสียทางแสงน้อยที่สุด เหมาะสำหรับในการใช้กับระยะทางไกล ๆ การเดินสายใยแก้วนำแสงกับระยะทางไกลมาก เช่น เดินทางระหว่างประเทศ ระหว่างเมือง มักใช้แบบซิงเกิลโหมด


รูปที่ 1 เส้นใยแก้วนำแสงแบบซิงเกิลโหมด
มัลติโหมด
เป็นเส้นใยแก้วนำแสงที่มีลักษณะการกระจายแสงออกด้านข้างได้ ดังนั้นจึงต้องสร้างให้มีดัชนีหักเหของแสงกับอุปกรณ์ฉาบผิวที่สัมผัสกับเคล็ดดิงให้สะท้อนกลับหมด หากการให้ดัชนีหักเกของแสงมีลักษณะทำให้แสงเลี้ยวเบนทีละน้อยเราเรียกว่าแบบเกรดอินเด็กซ์ หากให้แสงสะท้อนดยไม่ปรับคุณสมบัติของแท่งแก้วให้แสงค่อยเลี้ยวเบนก็เรียกว่าแบบ สเต็ปอินเด็กซ์
เส้นใยแก้วนำแสงที่ใช้ในเครือข่ายแลน ส่วนใหญ่ใช้แบบมัลติโหมด โดยเป็นขนาด 62.5/125 ไมโครเมตร หมายถึงเส้นผ่าศูนย์กลางของท่อแก้ว 62.5 ไมโครเมตร และของแคล็ดดิงรวมท่อแก้ว 125 ไมโครเมตร
คุณสมบัติของเสันใยแก้วนำแสงแบบสแต็ปอินเด็กซ์มีการสูญเสียสูงกว่าแบบเกรดอินเด็กซ์


รูปที่ 2 เส้นใยแก้วนำแสงแบบมัลติโหมด
ตัวส่งแสงและรับแสง
การใช้เส้นใยแก้วนำแสงจำเป็นต้องมีอุปกรณ์ที่ทำหน้าที่รับและส่งสัญญาณแสงอุปกรณ์ที่ทำหน้าที่ในการส่งสัญญาณแสงหรือเป็นแหล่งกำเนิดแสงคือ LED หรือเลเซอร์ไดโอด อุปกรณ์ส่งแสงนี้ทำหน้าที่เปลี่ยนคลื่นไฟฟ้าให้เป็นคลื่นแสง ส่วนอุปกรณ์รับแสงและเปลี่ยนกลับมาเป็นสัญญาณไฟฟ้า คือโฟโต้ไดโอด
อุปกรณ์ส่งแสงหรือ LED ใช้พลังงานเพียง 45 ไมโครวัตต์ สำหรับใช้กับเส้นใยแก้วนำแสงแบบ 62.5/125 การพิจารณาอุปกรณ์นี้ต้องดูที่แถบคลื่นแสง โดยปกติใช้คลื่นแสงย่านความยาวคลื่นประมาณ 830 ถึง 850 นาโนเมตร หรือมีแถบกว้างประมาณ 25-40 นาโนเมตร ดังนั้นข้อกำหนดเชิงพิกัดของเส้นใยแก้วนำแสงจึงกล่าวถึงความยาวคลื่นแสงที่ใช้ในย่าน 850 นาโนเมตร
ตัวรับแสงหรือโฟโต้ไดโอดเป็นอุปกรณ์ที่ใช้รับสัญญาณแสงและมีความไวต่อความเข้มแสง คลื่นแสงที่ส่งมามีการมอดูเลตสัญญาณข้อมูลเข้าไปร่วมด้วย
อุปกรณ์ตัวรับและตัวส่งแสงนี้มักทำมาสำเร็จเป็นโมดูล โดยเฉพาะเชื่อมต่อเข้ากับสัญญาณข้อมูลที่เป็นไฟฟ้าได้โดยตรง และทำให้สะดวกต่อการใช้งาน


รูปที่ 3 โครงสร้างของเส้นใยแก้วนำแสง
การเชื่อมต่อ และหัวต่อ

ที่ปลายสายแต่ละเส้นจะมีหัวต่อที่ใช้เชื่อมต่อกับเส้นใยแก้วนำแสง แสงจะผ่านหัวต่อไปยังอีกหัวต่อโดยเสมือนเชื่อมต่อกันเป็นเส้นเดียวได้
เมื่อเอาเส้นใยแก้วมาเข้าหัวที่ปลายแก้วจะมีลักษณะที่ส่งสัญญาณแสงออกมาได้ และต้องให้กำลังสูญเสียต่ำที่สุด ดังนั้นจึงมีวิธีที่จะทำให้ปลายท่อแก้วราบเรียบที่จะเชื่อมสัญญาณแสงต่อไปได้
ดังนั้นก่อนที่จะเข้าหัวต่อจึงต้องมีการฝนปลายท่อแก้ว วิธีการฝนปลายท่อแก้วนี้มีหลายวิธี เช่น การฝนแบบแบนราบ (Flat) การฝนแบบ PC และแบบ APC แต่ละแบบแสดงได้ดังรูปที่ 4


รูปที่4 การฝนปลายก่อนเข้าหัวสาย


การกระทำแต่ละแบบจะให้การลดทอนสัญญาณต่างกัน และยังต้องให้มีแสงสะท้อนกลับน้อยที่สุดเท่าที่จะน้อยได้ ลักษณะของหัวต่อเมื่อเชื่อมถึงกันแล้วจะต้องให้ผิวสัมผัสการส่งแสงทะลุถึงกัน เพื่อให้กำลังสูญเสียความเข้มแสงน้อยสุด โดยปกติหัวต่อที่ทำการฝนแก้วแบบแบนราบมีกำลังสูญเสียสูงกว่าแบบอื่น คือประมาณ -30 dB แบบ PC มีการสูญเสียประมาณ -40dB และแบบ APC มีการสูญเสียความเข้มน้อยสุดคือ -50 dB
ลักษณะของหัวต่อเมื่อเชื่อมต่อถึงกันแสดงดังรูปที่ 5

รูปที่ 5 เมื่อให้ปลายหัวต่อเชื่อมกันระหว่างแบบตัวผู้และตัวเมีย
การประยุกต์ใช้เส้นใยแก้วนำแสง
แนวโน้มการใช้งานเส้นใยแก้วนำแสงได้เป็นรูปธรรมที่เด่นชัดขึ้น ทั้งนี้เพราะมีผู้พัฒนาเทคโนโลยีให้รองรับกับการใช้เส้นใยแก้วนำแสง โดยเน้นที่ความเร็วของการรับส่งสัญญาณ เส้นใยแก้วนำแสงมีข้อเด่นในเรื่องความเชื่อถือสูง เพราะปราศจากการรบกวน อีกทั้งยังสามารถใช้กับเทคโนโลยีได้หลากหลายและรองรับสิ่งที่จะเกิดใหม่ในอนาคตได้มาก


รูปที่ 6 หัวต่อเส้นใยแก้วนำแสงแบบ ST


ตัวอย่างการใช้งานต่อไปนี้เป็นรูปแบบให้เห็นตัวอย่างของการประยุกต์ใช้ในอาคารในสำนักงาน โดยสามารถเดินสายสัญญาณด้วยเส้นใยแก้นำแสงตามมาตรฐานสากล คือมีสายในแนวดิ่ง และสายในแนวราบ สายในแนวดิ่งเชื่อมโยงระหว่างชั้น ส่วนสายในแนวราบเป็นการเชื่อมจากผู้ใช้มาที่ชุมสายแต่ละชั้น
รูปแบบไดอะแกรมการเดินสายทั่วไปประกอบด้วยโครงสร้างดังรูปที่ 7

รูปที่ 7 โครงสร้าการเดินสายสัญญาณตามมาตรฐาน EIA 568



จากลักษณะของการเดินสายตามมาตรฐาน EIA 586 นี้ สามารถนำมาใช้กับเทคโนโลยีต่าง ๆ ได้มาก เช่น
การใช้เทคโนโลยี 10BASE F

การใช้อีเธอร์เน็ตแบบ 10BASE F เป็นมาตรฐานที่ออกแบบมาให้ใช้แบบเทคโนโลยีอีเธอร์เน็ตโดยตรง ความเร็วสัญญาณยังคงอยู่ที่ 10 เมกะบิต และหากเป็น 10BASE F ก็เป็นความเร็ว 10 เมกะบิต ขณะนี้มีการพัฒนาระบบอีเธอร์เน็ตให้เป็นแบบกิกะบิตอีเธอร์เน็ต หรือความเร็วสัญญาณอยู่ที่ 1,000 เมกะบิต การเดินสายด้วยเส้นใยแก้วนำแสงมีลักษณะเหมือนกับสายยูทีพี โดยใช้ชิปเป็นตัวกระจายพอร์ตต่าง ๆ ดังแสดงในรูปที่ 8


รูปที่ 8 โครงสร้างการเดินสายสัญญาณเพื่อใช้กับเส้นใยแก้วนำแสง
FDDI
เทคโนโลยีนี้มีใช้มานานแล้ว เป็นเทคโนโลยีที่มีความเร็วของสัญญาณที่ 100 เมกะบิต และใช้สายสัญญาณเป็นเส้นใยแก้วนำแสง มีโครงสร้างเป็นวงแหวนสองชั้นและแตกกระจายออก การเดินสายสัญญาณตามมาตรฐาน EIA 568 ก็จัดให้เข้ากับ FDDI ได้ง่าย FDDI มีข้อดีคือสามารถเชื่อมโยงเครือข่ายระยะไกลได้ มีจำนวนโหนดบน FDDI ได้ถึง 1,000 โหนด การจัดโครงสร้างต่าง ๆ ของ FDDI สามารถทำผ่านทางแพตช์ที่เชื่อมต่อให้ได้รูปตามที่ FDDI ต้องการ ในลูปวงแหวนหลักของ FDDI ต้องการวงแหวนสองชั้น ซึ่งก็ต้องใช้เส้นใยแก้วนำแสงจำนวนทั้งหมด 4 ลำแสง FDDI ยังเป็นเครือข่ายหลักหรือแบ็กโบนเพื่อเชื่อมต่อไปยังเครือข่ายอื่นได้ เช่น เชื่อมต่อกับอีเธอร์เน็ต กับโทเค็นริง ไดอะแกรมของ FDDI แสดงดังรูปที่ 9


รูปที่ 9 ไดอะแกรมการเชื่อมโยงของ FDDI
ATM

เป็นเทคโนโลยีที่พัฒนามาเพื่อรองรับการใช้งานที่ความเร็วสูงมาก เอทีเอ็มสามารถใช้ได้กับความเร็ว 155 เมกะบิต 622 เมกะบิต และสูงเกินกว่ากิกะบิตในอนาคต โครงสร้างการเดินสายเอทีเอ็มมีลักษณะแบบดาว เป็นโครงสร้างการกระจายสายสัญญาณซึ่งตรงกับสภาพการใช้เส้นใยแก้วนำแสงอยู่แล้ว
ลักษณะของแพตช์และการกระจายสายสัญญาณเพื่อใช้กับเส้นใยแก้วนำแสงในลักษณะที่ปรับเปลี่ยนเข้ากับเทคโนโลยีต่าง ๆ ได้แสดงไว้ในรูปที่ 10 การวางโครงสร้างของสายสัญญาณเส้นใยแก้วจึงไม่แตกต่างกับสายยูทีพี


รูปที่ 10 การวางโครงสร้างสายเพื่อเชื่อมต่อเข้ากับอุปกรณ์ต่าง ๆ
อนาคตต้องเป็นเส้นใยแก้วนำแสง

ถึงแม้ว่าเทคโนโลยีในปัจจุบันมีการใช้งานสายยูทีพีอย่างแพร่หลายและได้ประโยชน์มหาศาสล แต่จากการพัฒนาเทคโนโลยีที่ต้องการให้ถนนของข้อมูลข่าวสารเป็นถนนขนาดใหญ่ที่เรียกว่าซูเปอร์ไฮเวย์ การรองรับข้อมูลจำนวนมากและการประยุกต์ในรูปแบบมัลติมีเดียที่กำลังจะเกิดขึ้นย่อมต้องทำให้สภาพการใช้ข้อมูลข่าวสารต้องพัฒนาให้รองรับกับจำนวนปริมาณข้อมูลที่จะมีมากขึ้น
จึงเชื่อแน่ว่า เส้นใยแก้วนำแสงจะเป็นสายสัญญาณที่ก้าวเข้ามาในยุคต่อไป และจะมีบทบาทเพิ่มสูงขึ้น ซึ่งเมื่อถึงเวลานั้นแล้วเราคงจะได้เห็นอาคารบ้านเรือน สำนักงาน หรือโรงงาน มีเส้นใยแก้วนำแสงเดินกระจายกันทั่วเหมือนกับที่เห็นสายไฟฟ้ากำลังอยู่ในขณะนี้และเหตุการณ์เหล่านี้คงจะเกิดขึ้นในอีกไม่นานัก


--------------------------------------------------------------------------------
เขียนโดย : รศ. ยืน ภู่วรวรรณ
ไมโครคอมพิวเตอร์ ฉบับที่ 150 เดือน มกราคม 2541
ชื่อ นางสาวศิริพร พลอามาตย์
เลขที่ 29 ม.4/1
โรงเรียนนารีนุกูล จ.อุบลราชธานี
วิชา ช0252
ผู้สอน อาจารย์สมปอง ตรุวรรณ์


โดย : นางสาว ศิริพร พลอามาตย์, ร.ร. นารีนุกูล จ. อุบลราชธานี, วันที่ 22 ธันวาคม 2544