

Faculty Members Space Physics and Energetic Particles Group Mahidol University, Bangkok, Thailand

David Ruffolo Alejandro Sáiz

WaritPetcharaKullaphaMitthumsiriPattarakijwanich Chaiwongkhot

 + 1 postdoctoral researcher, 1 electronics engineer, 5 graduate students (3 Thai, 2 international), several undergraduate & high school students

David Ruffolo, Mahidol University

Space Radiation: Key Collaborations

<u>Thailand</u>

- Chiang Mai U.
- Kasetsart U.
- NARIT
- PIM
- TMEC/NECTEC
- RMUTT
- Thammasat U.
- Chulalongkorn U.

Africa

Northwest U.,

South Africa

<u>USA</u>

- U. Delaware
- Princeton U.
- NASA/Goddard
- U. Wisconsin River Falls
- Stanford U.
- U. Hawaii Manoa
- U. New Hampshire

<u>Asia</u>

- IHEP, CAS, China
- Purple Mountain
 Observatory, China
- Shinshu U., Japan
- Yamagata U., Japan

Europe

- IRAP, France
- UCL, UK

David Ruffolo, Mahidol University

Australia/

Contact:

david.ruf@mahidol.ac.th

New Zealand

U. Tasmania

3

- Australian Antarctic
 - Division
- Victoria U.
 Wellington

ความสำคัญ/การใช้ประโยชน์: Space Situational Awareness

Example of a solar storm: 2024 May 14.

Magnetic reconnection resulted in a flare & CME, rearranging the magnetic field lines.

The CME impacted the Earth, leading to equatorward extension of aurorae and the strongest geomagnetic storm in 20 years.

A Satellite Detector Development:

By POiS(ons)E

Short-term plan (TSC-1):

Detection of radiation belt & solar energetic ions of various elements, providing warning of space weather effects and determining charge states via deflection in Earth's magnetic field

- Warning function will reproduce some capabilities of other nations
- Charge state measurements of ions ~10 MeV/n were performed over 1992-2004, and are not currently available from any other instruments
- Charge state information is scientifically important (see Ruffolo 1997)

Low-energy cosmic rays only reach Earth's polar regions; higher energy is needed to penetrate equatorial B field

The trajectory in a magnetic field depends on pc/q ... so by measuring the magnetic latitude at which ions of a known element and energy are observed, we can infer their charge state Q.

Galactic cosmic rays are fully stripped (Q = Z), but solar energetic particles can have Q < Z.

Image credit: http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT407/HTML/AT40705.htm

= Polar Orbiting Ion Spectrometer Experiment (for TSC-1)

- Inspired by SAMPEX/MAST mission during 1992-2004
- From He to Ni (Z = 2 to 28), Energy range : ~ 15MeV/nuc ~200MeV/nuc
- Silicon based detectors for ions identification by ΔE E Technique

P

David Ruffolo, Mahidon, versity

Position sensitive detector:

2 Double-sided silicon-based detector (Mirion)

dE-detector: Silicon-based

- 4 PINs (TMEC)
- 4 PIPs (Mirion)

E-detector:

1 CsI(TI) Scintillator + 4 SiPMs

Veto-detector: Silicon-based

- 1 PIN (TMEC)
- 1 PIP (Mirion)

For moderately relativistic charged particles, $-dE/dx \propto z^2/v^2$ and $E \approx (1/2)mv^2$. Consider using multiple detector layers, including

- thin layers that measure $\Delta E = |dE/dx| \Delta x$
- a thick layer where the particle stops, which measures *E*. Multiplying the two,

 $\Delta E \times E \propto (z^2/v^2) mv^2 \propto z^2 m$ This is the ΔE vs. *E* technique for identifying particle species.

For	ions.	z=Z	and	m	$\propto A$	are	discrete:
	10110,		unu	110			

Isotope	Ζ	A	Z^2A
$^{1}\mathrm{H}$	1	1	1
$^{2}\mathrm{H}$	1	2	2
³ He	2	3	12
⁴ He	2	4	16

GEANT4 simulation by Dr. Kullapha Chaiwongkhot

Thai Space Physics 2023, 25 August 2023

Overview of POiSE readout electronics

1st design of the electronics interface inside our payload

POiSE Analog Front-End

POiSE Analog Front-End module or **POiSE AFE** module for PINS/PIPs comprises three functional parts:

POiSE AFE revision D,yellow is a CSP output pulse, blue is shaping amplifier output pulse

Testing the Space Weather Payload

Radiation sources

The prototype detectors can differentiate particle energies

Ion accelerator

To calibrate signal pulse height and deposited energy

a nuclear scattering technique used to study the composition and structure of materials at the atomic level <u>by measuring the energy</u> <u>and angle of the backscattered ions</u>.

RBS stands for Rutherford BackScattering

Kunlanan Puprasit

Comparison of silicon surface detector response: PIN Vs RBS

David Ruffolo, Mahidol University